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ABSTRACT 

In this paper we prove some existence theorems for the Dirichlet problem in 
I~'t,2(Q) for a quasilinear elliptic equation under assumptions of the Ambro- 
setti-Prodi type. We also discuss the solvability of this problem, in a 
nonresonant case, with boundary data in L2(OQ) which leads in a natural way 
to the Dirichlet problem in a weighted Sobolev space. 

1. Introduction 

In recent years the Dirichlet problem for semilinear elliptic equations with a 
nonlinear part crossing the first eigenvalue has been widely studied by many 
authors. The Dirichlet problem with nonlinearities interacting with the spec- 
trum of the elliptic operator appears to have been first noted in the literature by 
Ambrosetti-Prodi [2]. Their result can be summarized as follows. 

Let Q c Rn be an open bounded domain with a smooth boundary and let 
g E C2(R) with g"(u) > 0 for all u ER. Suppose that 

lim g(u) g(u) = a  and l i m ~ - - f l  
u--oo U u-oo U 

exist and that 0 < a < '~1 < # < 22, where 21 and 22 are the first and the second 
eigenvalue of the Laplace operator. Under these assumptions they showed 

that the H61der space C"(O.), 0 < a < 1, admits a decomposition C*(Q)--- 
Eo U E1 U E2, where Eo and E2 are disjoint open sets with E1 ffi OEo = 0//2 such 
that the Dirichlet problem 
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Au + g(u) = h(x) in Q, 

u(x) = 0 o n  OQ, 

has exactly j solutions for h ~ Ej, j = 0, I, 2. A description of the sets Ej was 
given by Berger and Podolak [5]. For further extensions for more general 
elliptic linear operators we refer to Amann and Hess [1], Kazdan and Warner 
[18] (see also survey articles: de Figueiredo [16], Lazar and McKenna [19]). 
The investigation of the existence of multiple solutions in a Sobolev space 
I$-L2(Q), in the case where the Laplace operator is replaced by a more general 
elliptic operator with measurable coefficients, has been initiated by McKenna 
and Walter [20]. 

The purpose of this article is to study the existence of solutions in 16"~.2(Q) of 
the Dirichlet problem for a quasilinear elliptic operator of the form 

n 

L u = -  E 
i , j - -  1 

Di(aij(x, u)Dju) = f (u)  + h(x). 

We associate with each vEL2(Q) the elliptic operator 

/I  

L v= - Y~ D,(ao(x, v)Dj .) 
L j -  1 

and by 2~(v) we denote the first eigenvalue of the operator L ". Let 

K~ = inf{X~(v); vEL2(Q)} and r2 = sup{/[~(v); v~L2(Q)}.  

Then under the assumption of the Ambrosetti-Prodi type f ' ( -  oo)< r.~ < 
r.2 <f ' (oo) we establish some existence and non-existence results for the 
Dirichlet problem in Ig,'l.2(Q) (see Sections 2, 3 and 4). To obtain the existence 
of at least two solutions we use the degree theory for pseudomonotone 
operators (see Berkovits-Mustonen [6], Berkovits [7] and Browder [8]) and the 
concept of the G-covergence of elliptic operators (Spagnolo [24]). In Section 5 
we assume that all coefficients have uniform limits as [u I ~ oo. Consequently 
we can associate with these limit coefficients an elliptic operator. The first 
eigenvalue/z~ of the limit operator always satisfies the inequality i(71 ~ ].l 1. Some 
existence results, in the case/~1 = tq, were obtained [13]. In Section 5 we 
consider the case ~:~ < kh. We establish some existence theorems in the case 
where the nonlinearity is not in resonance with the limit operator, that is, the 
values of f do not interact with/zl. We also discuss the existence results when 
coefficients of L have only one sided limits at infinity. The existence results in 
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the case where f interacts with the first eigenvalue of the limit operator are 
given in Section 6. In particular we obtain a more general version of a theorem 
of the Ambrosetti-Prodi type obtained in Section 4. In the final Section 7 we 
briefly discuss the Dirichlet problem in resonance and compare our results 
with the recent work of Shapiro [23]. In Sections 5 and 6 we assume that the 
boundary data belong to L2(OQ). We point out here that this assumption leads 
in a natural way to the Dirichlet problem in a weighted Sobolev space I~'L2(Q). 

2. Preliminaries 

Let Q c R~ be a bounded domain. In Q we consider the Dirichlet problem 

n 

(1,) L u = -  Y. 
i , j -  1 

Di(aij(x, u)Dju) = f (u)  + tcl)(x) + h(x) in Q, 

(2) u(x) -- 0 on OQ, 

where t is a real parameter, h EL~(Q)  and ~ C(Q), with ¢b(x) > 0 on Q, are 

given functions. 
We assume the following throughout the paper; 

(A) There exist constants a > 0 and # > 0 such that 

tl 

i , j - -  1 
a~j(x, u)~i~j < fll~ 12 

for all ~ERn and ( x , u ) E Q  × R ,  aij =aj~ ( i , j =  1 . . . .  ,n).  Moreover the 
functions a~j(x, u) ( i , j  = 1 . . . . .  n) satisfy the Carath6odory conditions, that 
is, for each u ~ R  the functions aij(., u) are measurable on Q and for a.e. x ~ Q 
the functions a~j(x,.) are continuous on R. 

To formulate the assumption on the nonlinearity f we need some termi- 
nology. 

We associate with every v~L2(Q) a linear operator of the elliptic type 

given by 
n 

L ~ = - ~ Di(a,j(x, v)Dj.). 
i , j - -  I 

Let ~1(~)) be the first eigenvalue of L" and let us define 

r~ -- inf{A~(v); vEL2(Q)} and r2 = sup{Am(V); v~L2(Q)}. 
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It is known that 2~(v) is simple and the corresponding eigenfunctions (0~ can be 
taken positive on Q and normalized by 

f e~ov(x)2dx = 1. 

Using the variational characterization of  the first eigenvalue it is easy to see 
that r~ > 0. It is obvious that r2 < oc. 

We assume that the nonlinearity f E  Ca(R) and satisfies the Ambrosett i -  
Prodi type condition 

(B)  - oo < f ' (  - ~z) < Ici < Ic2 < f ' ( ~ )  < o0. 

Finally, we recall that a function u E Ig/~,2(Q) is a solution of(I t) ,  (2) if 

(3) f e  ~ %(x, u)D~uDjvdx = f¢. [f(u)v+ t~(x)v+ h(x)v]dx 
i , j -  1 

for every v~ WI'2(Q) with a compact support in Q. 
We commence with the following lemma. 

LEMMA 1. Let ~ be the first eigenfunction corresponding to the operator L ~, 
vEL 2(Q). Then 

inf  | ¢~(x)dx > 0. 
tSEL2(Q) JQ 

PROOF. Let {~ .  } be a minimizing sequence, that is 

lim fQ~.(x)dx inf fQ~(x)d.r. 
m ~ o v  v~L2(Q) 

For each m we have 

i , j  - ! 

and hence, by the ellipticity condition, the sequence ~ov. is also bounded in 
W~,2(Q). Consequently, we may assume that the sequence ~0v. converges to a 
function ~0 ~ WI,2(Q) weakly in WI,2(Q) and strongly in L2(Q) (Theorem 7.22 

in [17]). On the other hand SQ ~ .  dx -- 1 for each m,  therefore SQ ~ 2dx -- 1, 
~0 >ffi 0 and ~ ~ 0 on Q. We also have 
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0 < ( ~ ( x ) d x - -  inf /" ¢v(x)dx 
d( Q vEL2(Q) JQ 

and this completes the proof. 

To proceed further we observe that the assumption (B) implies the existence 
of constants C > 0 and 0 < Jl < ~1 ----< r2 < 62 such that 

f(s) >_- J~s - C for all s ER (4) 

and 

(5) 

LEMMA 2. 

f(s)>-_J2s-C for all sER.  

There exists a constant to such that for t > to the problem (It), (2) 
has no solution. 

PROOF. Let u ~ ~p~,2(Q) be a solution of the problem (It), (2) and let ~u be 
the first eigenfunction for the operator 

L u -- - ~, Di(a,j(x, u)Dj.). 
i , j - -  I 

Taking ~u as a test function in (3) we obtain 

f Q ~ ai,(x, u)D, uDj~Oudx = f Q [f(U)@u + tO(X)~Ou + h(x)@u]dx. 
i , j - -  ! 

Using the estimates (4) and (5) we get 

and 

The last two inequalities yield 

and 

(7) 
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We notice that ~1 < ~'1(u) < ~2, hence it follows from (6) that 

provided ~Q u~udx _-<_ 0. Similarly, if ~Q U~Oudx > 0 then again (7) implies the 
inequality (8). Since we always assume that the first eigenfunctions are 
normalized we derive from (8) that 

t < ~ u  C I h 2 • 
\ Q / d 

Here I Q I denotes the n-dimensional Lebesgue measure of Q. By Lemma 1 

( c (f, t < i n f . .  inf ~.dx CIQy2+ h 2 
- - \  Q ~L2tQ) dQ / \ Q / J '  

and this completes the proof. 

LEMMA 3. For each ftxed t the problem (It), (2) has a subsolution. 

PROOF. Let us consider the Dirichlet problem 

Lu = 6~u - C + tO + h in Q, 

u(x) = 0 on OQ, 

where t~l and C are constants appearing in the inequality (4). Since d~ < rm, by 
the Schauder fixed point theorem this problem admits at least one solution 
U ~  I~'m'2(Q). Taking C large, to ensure that tO + h < C on Q, by the maxi- 
mum principle we then obtain U -_< 0 on Q. The fact that U is a subsolution of 
(lt), (2) follows from the estimate (4). 

LEMMA 4. There exists t such that the problem (1 t), (2) has a supersolution. 

PROOF. We follow here the argument from the proof of Lemma 6 in [ 16]. 

Let Qi c (~l c Q2 c ~2 c Q with I Q - Q~I -- ~ to be chosen later. For a fixed 

N > 0 we define 
m = sup{ f(s) + h(x); x E Q, 0 < s < N}. 

Let H E C ( Q )  satisfy H(x)  -= Iml on Q - Q2, H(x)  = 0 on Q~ and 0 < H < 
I m I on Q. We denote by V a solution to the Dirichlet problem 

L u - - H  i n Q ,  u - - 0  onOQ. 

The existence of a solution v ~  I~'m'2(Q) easily follows from the Schauder fixed 
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point theorem. Since H >_- 0 on Q, it follows from the maximum principle that 
V > 0 on Q. By standard estimates (see [ 17], Theorem 8.16 p. 191) we have 

V(x) < C~ l[ H [Iz" < C~lrnl lQ - Q~I ~:' = C~lm I~ l/' 

where s > n and C~ > 0 is a constant independent  of V. We now choose c~ so 
that C~lm I~ ~/s < N. It is obvious that I m I + tO < H on Q for t sufficiently 

large and negative. Thus 

L V  = H > m + tO > f ( x ,  V) + tO + h o n Q ,  

that is, V is a supersolution. 

3. Existence of at least one solution 

We now are in a position to establish the following existence result. 

THEOREM 1. There exists t* such that the problem (1/), (2) has at least one 

solution for t < t* and no solution for t > t*. 

PROOF. By Lemma 4 for t large and negative there exists a supersolution 
VE I~,2(Q) of  (It), (2) which is non-negative on Q. Lemma 3 implies the 
existence of a subsolution U ~ l~ "~,:(Q) of  ( 1 t), (2). It follows, from the proof  of 
Lemma 3 that U < 0 on Q, hence U -<_ V on Q. Applying the result of  Deuel 
and Hess [15] we conclude the existence of  a solution u E I~1.2(Q) of the 
problem (lt), (2) such that U _-< u < Von  Q. Now we shall show that if there 
exists a solution to the problem (It), (2) for t--t- ,  then there exists also a 
solution to this problem for each t < t-. Indeed, let t < t-and fl ~ I~,2(Q) be a 
solution of the problem (1 :), (2). Thus 

La = f (a )  + tO + h > f ( a )  + tO + h i n Q ,  

and consequently a is a supersolution of  the problem (lt), (2). It follows from 
the estimate (4) that 

La  > Jta - C + tO + h in Q. 

Since ~ < x~, the Dirichlet problem 

L " v = ~ i v - C + t O + h  i n Q ,  v = 0  onOQ 

has at least one solution vE I~'I,2(Q). By virtue of  Theorem 8.16 in [17], 
v~L®(Q).  We now notice that 
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La(a - v) >-_ 61(a - v) in Q, 

a - v = 0 on OQ, 

hence by the maximum principle a > v on Q. Consequently there exists 
a c o n s t a n t  M > 0 such that a _-> - M  on Q. Finally, let us consider the 
Dirichlet problem 

Lu = O~u - C + t ~  + h in Q, 

u = - M on OQ. 

By the Schauder fixed point theorem this problem has at least one solution 
VE W~.2(Q). Since we may assume that C > t ~  + h on Q, the maximum 
principle yields V < - M on Q. It then follows from (4) that 

L V  < f (V)  + tdP + h i n Q ,  

that  is, V is a subsolution of  the problem (lt), (2) such that V < a on Q. 
Applying again the result of Deuel and Hess [15] we deduce the existence of  a 
solution u E I~,~(Q) of the problem (lt), (2) such that V < u < a on Q. To 
complete the proof  we set 

(1 I) t* = sup{t; the problem (lt), (2) admits a solution in l~l'2(Q)}. 

To establish the existence of a solution of(1 t*), (2) we need the concept of the 
G-convergence (see Spagnolo [24]). 

Let H-m(Q) __ (i~t.2(Q)). and set 

= ~A ~L(ff"t'2(Q), H-i(Q));A = - M(a, fl, Q) Di(aij(x)Dj. ) 
( i , j - -  1 

with aijGL~(Q), a o = aji(i,j = 1 . . . . .  n) and 

o~l~l 2<  ~ a~j(x)~j  < fll~12forall ~ S R ,  anda.e, x S Q } .  
i , j -  1 

A sequence of operators {At} (c~>0) in M(a, fl, Q) is said to be G- 
convergent to AoE M(a, #, Q) iff for each f ~  H- I (Q)  we have lim6-0 A£ tf = 
A0-tfweakly in l,f'l,2(Q). 

The following result is due to Spagnolo [24]. Let {A6} be a sequence in 
M(a,,8, Q), then there exist AoEM(a,  fl ~, Q) for some ] /~>0  and a sub- 
sequence {A6,} of  {A6} such that Av G-converges to A0. 

It is also known that if Az G-converges to A0, then the eigenvalues of  A6 
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converge to eigenvalues of Ao. Also eigenfunctions of A6 converge weakly in 
g:,2(Q) to eigenfunctions of  A0 (see [4]). 

Finally, if the sequence {A6} (c~ >_ 0) in M(a, p, Q) is G-convergent toA0 and 
if {v~} in [,~,l.2(Q) satisfies 

(a) lim6-0 v6 = v weakly in WI.2(Q), 

(b) lim6-o A~ v6 = f i n  H -  I(Q), 
then Aov -- f (see  Spagnolo [24]). 

THEOREM 2. The problem (lt,), (2) has at least one solution in I~l,2(Q). 

PROOF. By Lemma 1 t*, defined by (11), is finite. Let tk < t* and tk ~ t* as 
k---oo. By Theorem 1 for every k there exists at least one solution Uk in 
ff, ri,2(Q). We now show that the sequence Uk is bounded in l~i'2(Q). In the 
contrary case we may assume that 1[ Uk II w,~-" ~ as k - -  ~ .  It is easy to deduce 
from (A) and (B) that 

(12) fQ lZ uk(x):ax c, fQ uk(x)2ax + 

for some constants C~ > 0 and 6"2 > 0. Therefore we may assume that 
limk_~ [[ Uk [[L'= 00. The inequality (12) also shows that Vk = Uk 1[ Uk []£ a~ is 
bounded in I,P~,~(Q). Consequently we may assume that there exists a function 
vE I~'~,2(Q) such that limk-oo Vk = V weakly in l~l,2(Q), strongly in L2(Q) and 
a.e. on Q. We may also assume that the sequence of operators L"~ is 
G-convergent to an operator B EM(a,  ~l, Q) for some ] P >  0. Since 

L [ - -  ° lim f(Uk) + t k - -  t g/dx 
k-~ II u~ lie II uk lie II u~ I1~, 

= L f'(oo)v+Wdx - L f ' ( -  oo)v-gdx 

for each ¥ E I,p~,2(Q), we derive from the remark preceding this theorem that v 
satisfies the equation 

(13) Bv = f'(oo)v + - f ' (  - oo)v- in Q 

and moreover [[ v [b: = 1. Since the eigenvalues of  L"~ converge to eigenvalues 
of B, it is clear that the first eigenvalue v~ of B satisfies the inequality 
xt<-_v~<x2. It then follows from (B) that f ' ( - o o ) < v ~ < f ' ( o o ) .  Hence 
it is easy to see that the only solution in I'P~'2(Q) of (13) is a trivial solution 
and we obtain a contradiction. Consequently the sequence {Uk } is bounded in 
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I,f't'2(Q). It is now routine to show that a sub sequence of { Uk } converges weakly 
in I, Pt.2(Q), strongly in L2(Q) and a.e. on Q to a solution u E I,¢'~,2(Q) of the 

problem (I,.), (2). 

4. Existence of multiple solutions 

Throughout this section we assume (A) and (B). To establish the existence of 
multiple solutions we use the degree theory for operators of class (S)+ (see 
Berkovits [7], Berkovits and Mustonen [6] or Browder [9]). 

We recall that a mappingfof  a subset G of a Banach space Xinto  its dual X* 
is said to be of class (S)+ if for any sequence {xj} in G which converges weakly 
to x in X a n d  for which limj_~(f(xj), xj - x)  =< 0 we have xj ~ x .  

First we observe that the left side of the equation (lt) gives rise to a bounded 
and continuous operator Tt of class (S)+ from ff:,2(Q) into its dual space 
H -  t(Q), defined by the formula 

( Tt(u ), v ) = :Q [ ij~l ae(x, u )DiuDjv- f(u ) v -  t ~ v -  hv] dx 

for all u and v in l,~'l.2(Q). 
We commence with an a priori bound for solutions of the problem (10), (2), 

where the equation (10) has the form Lu = f(u) + h. 

LEMMA 5. Let H be a bounded subset of L®(Q). Then there exists a 
constant C(H) > 0 such that for any solution u ~ #~.2(Q ) of the problem (10), 
(2) with h E H we have 

II u [l w'a(Q) <- C(H). 

PROOF. In the contrary case there exists a sequence {hm } in H and the 

corresponding sequence of solutions {urn } in W~,2(Q) of the problem (I0), (2) 
such that lim,._® [[ Um [] w'~ -- oo. AS in the proof of Theorem 2 we show also 
that lim,._® [[ u,. IlL 2 = oO and the sequence Vm =Um [[ Um lID ~ is bounded in 
W~,~(Q). Therefore we may assume that v= converges to a function vE W~,~(Q) 
weakly in #t,~(Q), strongly in L2(Q) and a.c. on Q. Using the concept of the 
G- convergence we show that v satisfies the equation 

By-- f'(oo)v + - f'( - oo)v-, 

where B EM(a, #t, Q) for some #~ > 0. This fact gives a contradiction (for 
details see the proof of Theorem 2). 
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LEMMA 6. For each t < t* there exists a constant R(t) > 0 such that the 
degree of  T, satisfies 

d(T,, BR(O), O) = 0 

for each R >-_ R(t), where BR(O) is a ball centred at 0 of  radius R in W~a(Q). 

This result is a consequence of Lemmas 5 and 2 and the standard homotopy 
argument. 

To prove that the degree is equal to 1 in an open and bounded set in I~.2(Q) 
we use some ideas of McKenna and Walter [20]. 

We recall that a function 5: (0, oo) ~ (0, oo) is called a modulus of con- 
tinuity if it is increasing on (0, oo) and satisfies lim,_0+ d(s) = 0. 

The following result can be found in McKenna and Walter [20] (Lemma 1). 
Let Kbe a compact set in L2(Q) and let • be positive a.e. on Q. Then there 

exists a modulus of continuity d, depending only on K and @, such that 

][(l~l-q)/~)+llL,_-<_~(~) f o r ~ > 0  and ~ E K .  

Since f ' (  - 00)< x~, for each u E L2(Q) the Dirichlet problem 

L " z - f ' ( - ~ ) z = g ( u ) + h  i nQ ,  z = 0  o n a Q  

has a unique solution z E ff/~.2(Q) such that 

(14) II Dz II,' Q  --< S II g(u) + h 

for some constant B > 0 independent of u and for any g with g 'EL~(R).  
It is also well known that there exists a constant P > 0 such that 

0 5 )  II v e II 

for each vE I~'la(Q). 
For each v~L2(Q) let ~ E  I~,2(Q) be a solution of the Dirichlet problem 

L~uf#P  inQ and u(x)=O onOQ. 

Let us set ~ ( x )  = infoLd(Q) ~(X) ;  obviously ~ EL®(Q), moreover it follows 
from Theorem 8.18 in [17] that ~ ( x ) > 0  on Q. For each e > 0  and t E R  
w e  set  

Or.,--- [,.J (t~v + teB), 

where B -- B(0) is an open unit ball in I~",2(Q). It follows from the assumption 
(A) that 
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sup II D~v IIv ~ c II ~ IlL2 
~z2{Q) 

for some constant C > 0. Consequently the Ot,~ is bounded for each t and e. We 

now observe that since f (  - ~ )  < r~ the operator 

(L v -  f ' ( -  ~ ) ) - I  : L e ( Q ) ~ L 2 ( Q )  

exists and is compact. Let 

K =  I,.J ( ( L " - f ' ( - o o ) ) - ' ( / ~ ) } .  

It follows from the compactness of the embedding of I~'2(Q) into L2(Q) that K 

is a compact subset of  L2(Q). Finally let g be the modulus of continuity of  K 

with respect to ~ .  

LF.MMA 7. There exists e > 0 and to such that d(Tt,  Ot,~, O) = 1 for t < to. 

PROOF. We follow here the argument of Theorem 1 in [20]. First we show 

that one can choose to and t > 0 such that equation Tt = 0 has no solution on 

the boundary of Ot,~ for t < to. 

The equation (lt) can be written in the form 

(1,) Lu = f ( u ) + s ( - ~ P ) + h  inQ,  

where s = -  t. Let A = s u p n l f ' ( t ) - f ' ( o o ) [ .  We now choose e > 0  and q 

so that 

Bl 
(16) ~(e(AP + BJ) < 

4(AP + BOA 

and 

(17) q( II m~ I1,: + eP) =< aB,/4 for all w EL2(Q),  

where P and B~ = B -  l are constants appearing in the inequalities (I 4) and (15), 

respectively. With the change of the parameter s = - t we set 

0,,,= U (s,i,o- seB), 

where (b, = - O,. As in [20] we write (1~) in the form 

(18) L u  - f ' (  - oo)u = g ( u )  + s (  - ~ )  + h ,  

with g(u)  = f (u )  - f ' (  - oo)u. The function g can be written in the form 
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g(u) = go(u) + g,(u) + g2(u), 

where go(0) = 0 and g~ is bounded by q, g~ is bounded,  g2(u) = 0 for u < 0 and 
Ig~(u)l _-<A. Let u be a solution of ( Is )  in l~t,2(Q) belonging to 0Os,,, that is 
u ~ s d P ~ -  seOB for some v E L Z ( Q )  and u ~ s t b ~ -  seB for all w E L 2 ( Q )  and 

w # v. We show that this leads to a contradiction for some e > 0 and s 
sufficiently large. It is clear that 

II go(u) IlL' ------- qs( II ~ IlL' + el') < sen~/4, 

II h IIc + 

for sufficiently large so and 

II g,(u) II =< seBt/4 for s >___ So, 

II g2(u)11,2 ~ a  II u+ IlLs. 

Now for some w E/~ we have 

II u+ ILL'--< II (s4,~ + sew)+ ILL'--< II sew IlL2 ~ ese, 

since ~ ,  < 0 on Q. Consequently 

(19) II h IlL' + II g(u) 11,2 <= B,es + a P s e  ffi se(n,  + Ae ) .  

Now equation (18) can be written as 

(20) u = Stbu + (L" - f ' (  - oo))-I(g(u) + h) 

and by estimate (19) we obtain 

u = sdp u + se(AP + Bi)¥, 

for some ¢, ~ K .  Therefore we see that 

II u+ 11,.2 __< s II (4~u + e(Ae + n,)~,)+ 11,.2 _-< s II ( - q), + e(Ae + B,)q/)+ IlLs 

< se(AP + BOJ(e(AP + BO) <-_ B~se/4A. 

This estimate implies that 

II g:(u) IlL' ----< h II u+ IIL: _-< seB~/4 

and consequently 

II g(u) IlL s + II h IlLs_--_< 3seB~/4. 

Combining the representation (20), estimate (14) and the last inequality we 
obtain 
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II O(u  - s'b, 3 II~' = II D( z~ - f ' (  - ~ ) ) -~(g(u)  + h)]IL' 

_-< B II g(u) + h IlL' =< ~se, 

which means that u E scbu + ~seB. This contradicts the fact that u E OOs.,. This 
estimation remains true for the equation 

LaUu - f ' (  - oc)u = s ~  + 2(h + g(u)) ,  0 < 2 < 1. 

To complete the proof we observe that the degree of the operator associated 
with the Dirichlet problem 

L°u = s@ + f ' (  - oc)u in Q, u (x )  = 0 on 8Q 

is equal to 1 and the result follows applying the homotopy argument. 
Now by combining Lemmas 6 and 7 with the excision property of the degree 

we easily obtain the following result. 

THEOREM 3. There exists to such that for  every t < to the Dirichlet problem 

(1,), (2) has at least two solutions. 

It is obvious that the numbers t* and to from Theorems 1 and 3 satisfy the 
inequality to -< t*. 

5. The Dirichlet problem in a weighted Sobolev space; nonresonant case 

In this section we additionally assume that 

(C) The coefficients aij ( i , j  = 1 . . . . .  n)  are continuous on Q X R and for each 
u ~ R ,  a~j(., u ) ~ C ~ ( Q )  and moreover there exist functions A~jECt(Q) 
such that 

lim aij(x, u)  = Aij(x)  and lim Dxa~j(x, u)  = DxAij(x) 
lul--oo luI--Qo 

( i , j = 1 , . . . ,  n)  uniformly in x E Q .  
We assume that the boundary dQ is of class C 2. 

With these limit coefficients we associate the elliptic operator 

. 4 = -  ~, D,~A,j~x)Oj.). 
i , j - -  1 

Let/z, denote the first eigenvalue of the operator A. We always have Xl </h.  
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One can give examples of elliptic quasilinear operators for which both cases 
rl = /h  or ~1 </zl occur. 

Under this additional hypothesis we consider the Dirichlet problem 

(21) Lu = f(x, u) in Q, 

(22) u(x) = ~o(x) on OO, 

where (p E L2(OQ). In paper [13] we considered the Dirichlet problem (21) and 
(22) in both situations rl = /h  and ~q </z~ and we proved that the problem (21), 
(22) admits a solution in a weighted Sobolov space providedf(x, u) = au with 
/z < ~q = #1, where/~ is constant. A similar existence result was proved in the 
case where/z < tc~ with rl </21. The objective of this section is to improve these 
existence results and show that the problem (21), (22) is solvable if/t </Zl, 
regardless of the relation between/zl and ~q. 

We impose the following condition on the nonlinearity f :  

(D) The nonlinearity fsatisfies the Carath6odory condition and 

[f(x,t)l <a[t[ +b on Q ×R,  

where a > 0 and b > 0 are constants. 

Since the boundary datum ~0 EL2(OQ) and not every function from this 
space is a trace of an element from W1.2(Q) we cannot expect a solution of(21), 
(22) to belong to WI,2(Q). It follows from [10] and [11] (see also [22]) that the 
suitable Sobolev space in our situation is 

I~"2(Q)= {u; uE W~l~(Q) and yQ[lDu(x)12r(x) + u(x)2]dx < oo} 

equipped with the norm 

2 = fo[IDu(x)12r(x)  + u(xYldx, II u II w"(Q) 

where r(x) = dist(x, OQ) for x ~ Q. 

To explain the meaning of the boundary condition (22) we need some 
terminology. It follows from the regularity of the boundary OQ that there exists 
a number ~0 > 0 such that for t~ ~ (0, t~0) the domain 

Q6=QN{x;miny~0e Ix - yl > ~} 

with the boundary 0Q~ possesses the following property: to each Xo ~ OQ there 
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is a unique point x6(xo)EOQ6 such that x6(xo) = Xo - Jv(x0), where V(Xo) is the 
outward normal OQ at x0. The above relation gives a one-to-one mapping, of 
class C ~, of OQ on OQj. 

As in [10] (see also [11] and [22]) we adopt the following approach to the 
Dirichlet problem (21), (22). 

Let ~ ELZ(OQ). A weak solution u E WI~(Q) of (21) is a solution of the 
Dirichlet problem with the boundary condition (22) if 

(23) lim f [u(x6(x)) - ~(x)]2dSx = 0. 
6~0,3OQ 

It follows from [11] that any solution u E ~ ( Q )  of (21), (22), with the 
boundary condition in the sense of the L2-convergence, must belong to 
I~'.2(Q). 

Since OQ E C 2, the distance function r(x) belongs to C2(Q - Q,Q, if t~o is 
sufficiently small. We denote by p(x) the extension of the function r(x) into Q 
satisfying the following properties: p(x)= r(x) on Q -  Q~, p EC2(Q) and 
p ( x ) >  0 on Q. 

THEOREM 4. Let xt < lz~. I f  

f ( x , t )  
lim ~ =/z </z~ 

Itl ~c¢ t 

uniformly in x E Q ,  then the Dirichlet problem (21), (22) has at least one 
solution u E l~'l.2(Q). 

PROOF. F o r  e > 0 w e  set  

f (x, u)-- 
f(x, u) 

l + e l f ( x , u ) l  
f o r ( x , u ) E Q  × R  

and consider for each e > 0 the Dirichlet problem 

(21e) Lu -- f~(x, u) in Q, 

with the boundary condition (22). Since If~(x, u)l < 1/e on Q × R, it follows 
from [ 12] that for each e > 0 there exists a solution u~ ~ I~'~'2(Q) of the problem 
(21 e), (22). 

The family of solutions {u,, e > 0} must be bounded in LZ(Q). In the 
contrary case we may assume that l] u~. HL 2 "-~ GO for some sequence e,. -~ O. Let 
us set um = u~, a n d  Vm = Um II Um II~L and let 
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ql(X)=[:m(X)(p(x)--t~ ) on Q, 

o n a  - Q 2  

for 0 < t5 < t~o. Taking ~ as a test function and integrating by parts we get 

~Qj n 

E 
i , j -  I 

ao(x, Um)DiUmDjUm(p -- t~)dx 

1 

2 

(24) 
1 

2 

£~ ~ foU~'ao(x,s)dsD, pDjpdSx 
o , j - -  1 

1 "2 
- - - f~  ~ ~o u2aij(x' s)dsD°pdx -2  fo~ ~' fo Dia°(x' s)dsDjpdx 

i , j  - I i , j  - 1 

If(x, urn)l lure I(P - ~)dx. 

Letting ~ ~ 0 and applying the ellipticity condition and the Young inequality 
we obtain 

(25) fe IDUml2pdx N C' fQU2mdx + C2 fQ ~°2dSx + C3 

for some positive constants Ct, C2 and C3. This inequality implies that the 
sequence Vm is bounded in [~,I,2(Q). Consequently, by Theorem 4.11 in [2 l], we 
may assume that limm-o~ Vm = V weakly in 1~1,2(Q), strongly in L2(Q) and a.e. 

on Q. Since I[ Vm IlL 2 = 1 for each m, v ~ 0  on Q. We now observe that 

l 
< 1  o n Q  for all m 1 +e,,,If(x, um)l 

and therefore we may assume that 
1 

converges weakly in L2(Q) to some function a ~L2(Q). 
1 +emlf(x, Um)l 

It is also clear that 

(26) fQ a(x)w(x)2dx < fo. w(x)2dx 

for each wEL2(Q). Let ~t be a function in WI'2(Q) with compact support 
in Q, thus 
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(27) fo. ~ a°(x' Um)D~vmDjgdx = fO. f~.(x, Um)11 U m [[~l~//(x)dx. 
i,j -- 1 

Writing the right hand side of (2) as 

~ f~.(X, Urn) ~¢(x)dx = [ f Q f ( x '  um) 

II Um II " 
¢,(x) 

Itv(x) 1 Jr em l f( x, Um)[ 
dx 

f Q ~,(x) 
+It V(X) l_kemlf(X, Um)[ dx 

and using the assumption that 

f(x, t) 
lim " 

Itl-~o t 
=i t  uniformly in Q, 

we can easily show that 

(28) lim [" f~_.(x, u,.) 
~-~-'Q Ilu~ I1~' 

¥(x)dx = It f o. a(x)v(x)¥(x)dx. 

On the other hand 

L L Yo Y. ao(x, um)DiVmDj~lldx= II um I1~' ~ D~ ao(x, s)dsDjydx 
i,j = 1 i,j- I 

fQ -II  Um I1~' ~ 0 D,a,Ax, s)dsDjg,dx 
i,j = 1 

fo fo" = - II UI II~' a,Ax, s)asou~,ax 
i,j= 1 

-II  Um II~' fQ ~ fo'Diao( x, s)dsDj~dx 
i,j-- I 

and repeating the argument from [ 12] we deduce that 
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m--oo i,j-- 1 i,j-- l 

yQ ~ DiAovDjg/dx. 
i , j  --  1 

Combining the last relation with (27) and (28) we get 

(29) L ~ A°(x)D'vDj~dx =it L a(x)v~dx 
i,j = l 

for each V E Wt,2(Q) with compact support in Q. It follows from [ 1 O] that v has 
a trace ~.L2(OQ). Replacing in (29) ~by ~ .p with qJ~ W~,2(Q) and integrat- 
ing by parts we get 

f¢ ~ AuD, vD,¥pdx-~Q ~ Ao~DipD, pdSx 
i , j -  1 i , j - -  1 

(30) L ~ Di(AijDjPv)¥dx =It fQa(x)t)~dx. 
i , j -  1 

Similarly taking pg as a test function, with ~ ~ Wt,2(Q), we get 

Co :o - II Um II/~' D, ao(x, s)dsDj~pdx 
i,j - 1 

--l[ Um I[~! fQ ~ yoU'aij( X, s)dsDi(Dfl/p)dx 
i , j  --  I 

__ 11 Um ,[L~IL ~ £u. Diaiy(x, s)ds~D/pdx 
i , j  --  1 

- 1 1  u. ['~'L ~: ~ "aij(X'S)dSDi(~/DJp)d'S 
i , j  - 1 

- l ]  Um II~' foe ~ fO u'aij(x's)dsD'pdSx 
i , j - -  1 

= II Um II/~' left(x, Um)~lldx.  

Letting m --- oo we derive from the last equation that 
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(31) 

- fQ ~ DiAo(x)vDjq/pdx - fo. ~ Ao(x)vDi(DJq/p)dx 
i , j  -- 1 i , j  -- 1 

- ft~ ~" D'Au(x)vgDjP d x -  fQ ~ Aij(x)vD,(¥Djp)dx 
i , j  - 1 i , j  - 1 

fea(x)v ,dx 
for each ¥ ~ W~,2(Q). Comparing (30) and (31) we get 

fo ~ ~" Aij(x)DipDjpCdSx=O 
Q i , j -  1 

for each ¢, E Wl,2(Q) and consequently ~ = 0 a.e. on OQ. Taking v as a test 
function in (29) we obtain from the variational characterization of the first 
eigenvalue/~ that 

/~l v(x) 2dx< ~ Ao(x)DNDjvdx 
Q i , j = l  

= # fo  a(x)vZdx 

<-_lt fev2dx, 

which is impossible since/zt >/~ and v ~  0 on Q. Therefore {Urn } is bounded in 
L2(Q) and by virtue of the estimate (25) the sequence {urn} is bounded in 
l~'t.2(Q). Now it is obvious that with the aid of Theorem 4.11 in [21] we can 
show that a suitable subsequence of Um converges to solution of (21), (22) 
weakly in wt,2(Q), strongly in L2(Q) and a.e. on Q (for details see [11] 

and [ 12]). 
If we assume the existence of one-sided limits in (C) we can only claim the 

existence of solutions for nonnegative or nonpositive boundary data. Namely, 
let us assume 

(C+) lim aij(x, t) = A~ (x), lim Dxau(x, t) ffi DxAo +. (x) 
t ~ o o  t ~ o o  

uniformly in Q, where Ai + E C~((~) (i,j = I , . . . ,  n). 
Let #+ be the first eigenvalue of the operator 

A + = - D (A; 
i , j  - I 
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THEOREM 5. Suppose that (C+) holds and that 

limf(X, t) - / z  </z~ + 
t ~ ¢ o  t 

uniformly in x E Q and f(x,  u) >= 0 for x E Q and ~ E [0, oo). Then for each 
E L  2(OQ), with ~ >= 0 on OQ, there exists a nonnegative solution u E ff,'~.2(Q). 

PROOF. For each e > 0 we consider the Dirichlet problem 

If(x,u)[ 
(21,+) L u  = in Q, 

l + e l f ( x , u ) l  

with the boundary condition (22). It follows from [12] and the maximum 
principle that for each e > 0  the problem (21e+), (22) has a nonnegative 
solution ue E I~,2(Q). Consequently u~ satisfies the equation 

f (x ,  ue) 
Lu, -- in Q. 

1 +e l f ( x ,  u,)l 

Repeating the argument of Theorem 4 the result easily follows. 
Finally, let us assume that 

(C_) lim ao(x, t) = A f  (x), lim Dxao(x, t) = DxAf (x) 
t ~ - - o 0  t ~ o 0  

uniformly in x E Q, where A o- E C~((~) (i, j = 1 , . . . ,  n). 
Denoting by g~- the first eigenvalue of the elliptic operator 

n 

a - = -  2 
i , j - -  1 

we can state the following existence result. 

THEOREM 6. Suppose (C_) holds and that 

f (x ,  t) 
lim ~ = # < /zF  

t ~ - - ° O  t 

uniformly in x E Q and that f (x ,  u) < O for x E Q and u E [0, oo). Then for each 
q~ eL2(dQ) with ~o ~ 0 on OQ, there exists a nonpositive solution in I~.2(Q) of 
the problem (21), (22). 
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6. The Dirichlet problem with the nonlinearity crossing the first eigenvalue 
of the fimit operator 

The aim of this section is to investigate the existence of  solutions of the 
problem (1,), (2) under the assumption (C). We commence with a partial 
existence result. As in Section 5 we denote by g,- the first eigenvalue of the 

operator A -.  

THrORrM 7. Suppose that the coefficients ao, i = 1 , . . . ,  n, satisfy (C_) 
and that fhas  a bounded derivative with.['( - oo ) < #i-. Then there exists to such 

that the problem (lt), (2) is solvable in l~m'2(Q) for each t < to. 

PROOF. It follows from the assumptions on f ,  that there exists ~1 > 0 and 
C > 0 such that 

f (s)  > ~ls - C 

for all s e R. By Theorem 5 for every t, the Dirichlet problem 

Lu = ~ u  - C + tO + h in Q, 

u(x) = 0 on OQ 

has a nonpositive solution U 6 ff:,2(Q). Here C is chosen so that tO + h < C 
on Q. It is clear that U is a subsolution of  the problem (1 t), (2). Inspection of  
Lemma 4 shows that there exists to such that the problem (lt), (2) has 
nonnegative supersolution VE ff:,e(Q) for each t < to. The existence of a 
solution for each t < to follows from the result of  Deuel and Hess [15]. 

We now establish a nonexistence result. 

THEOREM 8. Suppose that the coefftcients ao, i , j  = 1 , . . . ,  n, satisfy 

(C) and that f has a bounded derivative on R with f ' ( - ~ ) < # l <  f'(oo). 

Then there exists tl such that the problem (It), (2) has no solution in ff:,2(Q) 

for all t > tl. 

PRooF. Suppose that our assertion is false. Then there exist a sequence 
t m " "  oo as m --" oo and a sequence {urn } in ff:,2(Q) such that 

Lure ~- f(Um) + tmC~(X) + h(x) in Q, 

Urn(X) ---- 0 on dQ. 

First we prove that the sequence {urn~tin } is bounded in L2(Q). In the contrary 
case we may assume that 
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lira ]] um [_.___L L ~ =  0o. 
7 / I ~  tm 

This also implies that limm_~ ]] um IlL ~ = 0O. Let us set v,,, = u,,,/]] um IlL 2. Using 
um as a test function in (3) we derive the estimate 

(32) yQ [Dumi2dx < C, yQu~dx + C2tm +C3 

for some constants C~ > 0, C2 > 0 and C3 > 0. This estimate yields that 

f e  tm C3 
IDvm IZdx ~ el + II Um lib Cz 4 II um lib 

Since tin~ II u~ lib and 1/II um IIL~ both tend to 0 as m ~ oo, we conclude 
that the sequence vm is bounded in W~,2(Q). Therefore we may assume that 
limm_~ vm -- v weakly in WI.2(Q), strongly in L2(Q) and a.e. on Q. Since 
II v. IIL, ~- 1 for all m,  we see that v----0 on Q. It is also easy to see that v 

satisfies the equation 

Av = f '(  ~ )v + - f ' (  - oo )v- in Q, 

which has only trivial solution and we arrive at a contradiction. Consequently 
wm= um/t,~ must  be bounded in L2(Q) and by (32) it is also bounded in 
l,f'l.Z(Q). Therefore we may assume that limm_~ Wm= W weakly in I~'~.z(Q), 
strongly in L2(Q) and a.e. on Q. The limit function w is a solution of  the 
equation 

Aw = f'(oo)w + - f ' ( -  oo)w- + ¢a in Q. 

Taking as a test function the first eigenfunction ~ of  A we get 

which gives that 

( f ' ( - ~ ) - i t O  £ w- * tdx  f f i( f ' (oo)-l t ,)  L w+*,dx + L ¢i~,dx. 

Since f ' (  - oo) - l t ,  < 0 ,  f '(oo) - i t~ > 0 and So tlxI~dx > 0, we get a con- 
tradiction. 

It is dear  that, under  the assumptions of  Theorem 8, Lemma 5 continues to 
hold. Consequently using the homotopy argument we show that for each t 

there exists a R(t) > 0 such that 
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d(T,, BR(O), O) = 0 

for each R > R(t). 

We are now in a position to formulate the multiplicity result. 

THEOREM 9. Suppose that the coefficients a o, i, j = 1 . . . .  , n, satisfy (C) 
and that the nonlinearity fhas  a bounded derivative on R with f ' (  - 0o) < lCl and 

f'(oo) >#1. Then there exists t~ such that the problem (lt), (2) has at least two 

solutions for t < tl. 

The inequality f ' ( -  oo)< r~ implies that Lemma 7 remains true and the 
result follows from the excision property of the degree of the operator Tt. 

Theorem 9 is a generalization of Theorem 3. We point out here that one can 
give an example of a quasilinear operator for which r2 >#~ therefore the 
inequality f'(oo)>/z~ not necessarily implies the second inequality from the 
assumption (B). 

7. The  Dirichlet  problem in resonance  

Recently Shapiro [23] has introduced the following quantity related to the 
spectrum of the family of the operators {L v, v~L2(Q)}.  

Let ¢tm be a sequence of orthonormal eigenfunctions of the Laplace operator 

- Aym = A= Ym in Q, 

Let 
V'm(X) = 0 o n  OQ. 

; l *= in f~  !L~u-'u) u~mO, u =C,  ff/, + . . .  + C,~, ,  
t ( u , u )  ' 

w = ~,~6 + • "" + ~,~/, , where n is an arbitrary integer, 

C, . . . .  , C.  and ~ , . . . ,  ~, are constants[. 
J 

A* can be viewed as a generalized first eigenvalue of the quasilinear operator L. 
Under the different set of assumptions on L Shapiro [23] established some 
existence theorem for the Dirichlet problem in resonance. Here we briefly 
discuss the Dirichlet problem in resonance under the assumption that the 
coefficients (a0}, i , j  -- 1 . . . . .  n, satisfy (C) with #1 -- x~. 

We commence by showing that ~:~ -- A*. Indeed, taking 



VOI. 63, 1988 QUASILINEAR ELLIPTICITY AND THE DIRICHLET PROBLEM 377 

w = wN = N¥~ + (2¥2 + "" • + (~ ¥~ 

and u as in the definition of  2* we have 

2* < (LW~u' u) 
(u, u) 

Letting N---- oo we obtain 

(au, u) 
2* = < ~ 

(u, u) 

Since {~m} is complete in I~,2(Q) we see that 2" =</tt. On the other hand, for 

each w=C~95+ '"+Cn~un  and u=CI~U~+' ' '+Cn¥n,  with U ~ 0 ,  
we have 

(L'u, u) 

(u, u) 

and consequently x~ < 2*. 

THEOREM 10. Suppose that the nonlinearity f is a Carathdodory function 
on Q x R and If(x, u)l _-< H(x) on Q x R for some nonnegative function H in 
L 2(Q ). Suppose further that there exist limits 

a.e. on 0.. If  

(33) 

and 

lim f(x,  u) = f÷(x) and lim f(x,  u) = f - ( x )  
U ~ O 0  n ~ o o  

f ef+(x)O,(x)dx + f Q h(x)~,(x)dx < 0 

(34) f e  f-(x)~(x)dx + f e  h(x)~(x)dx > O, 

where ~ is the first eigenfunction of  A, then the Dirichlet problem 

Lu = f(x,  u) + h(x) in Q and u(x) = 0 on OQ 

admits a solution in I~I'2(Q). 

PROOF. For each integer m > 1 we consider the Dirichlet problem 

Lu = ( X l  - 1/m)u + f(x,  u) + h(x) in Q and u(x) = 0 on OQ. 

According to Theorem 4, for each m there exists a solution u ,  E IV~,2(Q). It is 
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sufficient to show that the sequence {Um ) is bounded in L:(Q). In the contrary 

case we may assume that limm-~ II Um IlL' = ~ .  It is easy to see that 

fQI DUm 12dx ~ C~ yQ u2dx + C2 

for some constants C~ > 0 and C2 > 0. Consequently the sequence Vm = 
Um/II Ur, IlL' is bounded in ff/~.2(a). 

It is now routine to show that a subsequence of urn, which we relabel again as 
Vm, converges to a function v weakly in 1¢'~,2(Q), strongly in L2(Q) and a.e. on 

Q. Moreover v satisfies the equation Av= XlV. Since II v IlL' = 1, there- 
fore either v = ~l  or v = - ~ .  It follows from the variational characteriza- 

tion of  eigenvalues that 

1 fo. u~mdx< fQ f(x, Um)UmdX-Jr fQ h(x)dx m 

and this implies that 

O ~ f Q f ( X ,  Vm [l um ]lL2)1)mdx q" f o h v m d x .  

If  v = ~ l  we get, letting m ~ oo, that 

O ~ f Qf+(x)~'(x)dx + ~o. h(x)¢P,(x)dx, 

which contradicts (32). Similarly, if v = - ~ we get 

0 >= fe  f-(x)*,(x)dx + fe  h(X)*l (X)dx  

which gives a contradiction to (34). 
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