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ABSTRACT

In this paper we prove some existence theorems for the Dirichlet problem in
W'(Q) for a quasilinear elliptic equation under assumptions of the Ambro-
setti-Prodi type. We also discuss the solvability of this problem, in a
nonresonant case, with boundary data in L¥4Q) which leads in a natural way
to the Dirichlet problem in a weighted Sobolev space.

1. Introduction

In recent years the Dirichlet problem for semilinear elliptic equations with a
nonlinear part crossing the first eigenvalue has been widely studied by many
authors. The Dirichlet problem with nonlinearities interacting with the spec-
trum of the elliptic operator appears to have been first noted in the literature by
Ambrosetti-Prodi [2]. Their result can be summarized as follows.

Let Q C R, be an open bounded domain with a smooth boundary and let
g € CYR) with g”(u) > 0 for all u €R. Suppose that

g() gu) _

lim =——=a and lim=——=§
u——oo Y u—wo Y

exist and that 0 <a <A, <f < 4,, where 4, and 4, are the first and the second
eigenvalue of the Laplace operator. Under these assumptions they showed
that the Holder space C*(Q), 0 <a< 1, admits a decomposition C*(Q) =

E, U E, U E,, where E; and E, are disjoint open sets with E, = E, = dF, such
that the Dirichlet problem
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Au+g(u)=h(x) inQ,
u(x)=0 ondQ,

has exactly j solutions for hEE;, j =0, 1, 2. A description of the sets E; was
given by Berger and Podolak [5]. For further extensions for more general
elliptic linear operators we refer to Amann and Hess [1], Kazdan and Warner
[18] (see also survey articles: de Figueiredo [16], Lazar and McKenna [19]).
The investigation of the existence of multiple solutions in a Sobolev space
W'(Q), in the case where the Laplace operator is replaced by a more general
elliptic operator with measurable coefficients, has been initiated by McKenna
and Walter [20].

The purpose of this article is to study the existence of solutions in W'(Q) of
the Dirichlet problem for a quasilinear elliptic operator of the form

Lu=— 3 Dyay(x, )Du) = flu) + h(x).

ij=1

We associate with each v€ L% Q) the elliptic operator

L'=— i Di(a;(x, v)D; )

iLj=1
and by 4,(v) we denote the first eigenvalue of the operator L*. Let
Kk =inf{A,(t); vELXQ)} and K, =sup{4,(v); vELXQ)}.

Then under the assumption of the Ambrosetti-Prodi type f/( — o) <K, =
K, = (o) we establish some existence and non-existence results for the
Dirichlet problem in W'%(Q) (see Sections 2, 3 and 4). To obtain the existence
of at least two solutions we use the degree theory for pseudomonotone
operators (see Berkovits—-Mustonen [6], Berkovits [7] and Browder [8]) and the
concept of the G-covergence of elliptic operators (Spagnolo [24]). In Section §
we assume that all coefficients have uniform limits as | # | — co. Consequently
we can associate with these limit coefficients an elliptic operator. The first
eigenvalue g, of the limit operator always satisfies the inequality x; < u,. Some
existence results, in the case u, = k;, were obtained [13]. In Section 5 we
consider the case x, <yu,. We establish some existence theorems in the case
where the nonlinearity is not in resonance with the limit operator, that is, the
values of fdo not interact with u,. We also discuss the existence results when
coefficients of L have only one sided limits at infinity. The existence results in
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the case where f interacts with the first eigenvalue of the limit operator are
given in Section 6. In particular we obtain a more general version of a theorem
of the Ambrosetti-Prodi type obtained in Section 4. In the final Section 7 we
briefly discuss the Dirichlet problem in resonance and compare our results
with the recent work of Shapiro [23]. In Sections 5 and 6 we assume that the
boundary data belong to L%8Q). We point out here that this assumption leads
in a natural way to the Dirichlet problem in a weighted Sobolev space W'*(Q).

2. Preliminaries

Let Q C R, be a bounded domain. In Q we consider the Dirichlet problem

(1) Lu=— ¥ Diay(x,u)Du)=flu)+1®x)+h(x) inQ,

Q=1
) u(x)=0 onadQ,

where ¢ is a real parameter, # € L*(Q) and ®€ C(Q), with ®(x) > 0on 0, are
given functions.
We assume the following throughout the paper;

(A) There exist constants « > 0 and § > 0 such that

n
a|é|2§ P aij(x; u)éifj =BIEP
ij=1
for all (ER, and (x,u)EQ XR, a;=a; (i,j=1,...,n). Moreover the
functions a;(x, u) (i,j =1,..., n) satisfy the Carathéodory conditions, that
is, for each # €ER the functions ag;;( -, u) are measurable on Q and fora.e. x€Q
the functions a;(x, -) are continuous on R.

To formulate the assumption on the nonlinearity f we need some termi-
nology.

We associate with every vEL¥Q) a linear operator of the elliptic type
given by

L=~ i Di(a;(x, v)D;-).

i,j=1
Let 4,(v) be the first eigenvalue of L* and let us define

Kk, = inf{A,(v); vELXQ)} and kK, = sup{4,(v); vEL¥Q)}.
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It is known that 4,(v) is simple and the corresponding eigenfunctions ¢, can be
taken positive on Q and normalized by

f @,(x)%dx = 1.
e

Using the variational characterization of the first eigenvalue it is easy to see
that x, > 0. It is obvious that 1, < oc.

We assume that the nonlinearity f€ C'(R) and satisfies the Ambrosetti-
Prodi type condition

(B) — 0 < fi(— ) <K =K< f(0) < .

Finally, we recall that a function u € W) is a solution of (1,), (2) if

3) i a;(x, u)DuDvdx = fo [ftwv+ tD(x)v + h(x)v]dx

Q ij=1

for every v€ W'} Q) with a compact support in Q.
We commence with the following lemma.

LEMMA 1. Let ¢, be the first eigenfunction corresponding to the operator L,
vELXQ). Then
inf @,(x)dx > 0.
e

veLX(Q)

PrOOF. Let {g, } be a minimizing sequence, that is

m—=wx

lim ¢,,(x)dx = inf f @, (x)dx.
) vl Q) J g
For each m we have

fQ S a,0%, vm)Di0,. D, 0.dx = Ai(U) fgwﬁ.dx,

Q=1

and hence, by the ellipticity condition, the sequence ¢,_ is also bounded in
WX Q). Consequently, we may assume that the sequence ¢, converges to a
function p € W'(Q) weakly in W'¥Q) and strongly in L%Q) (Theorem 7.22
in [17]). On the other hand {, ¢ dx =1 for each m, therefore |, p’dx = 1,
¢ =2 0and ¢=0 on Q. We also have
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0< fQ¢(x)dx= velg(fo ) fe%(x)dx

and this completes the proof.

To proceed further we observe that the assumption (B) implies the existence
of constants C > 0 and 0 < J, < k; = k, <, such that

4 fls)=zds—~C foralls€R
and
5) fls)=d,s—C  forallsER.

LEMMA 2. There exists a constant t, such that for t > t, the problem (1,), (2)
has no solution.

PrROOF. Let u € W'*(Q) be a solution of the problem (1,), (2) and let ¢, be
the first eigenfunction for the operator

L*=— ¥ Di(a,x,u)D;").

ij=1

Taking ¢, as a test function in (3) we obtain

5 ay(x, wDuDp.dx = [ e, + 10(x)g, + hx)gulds.

Q ij=1
Using the estimates (4) and (5) we get

fg A(wug,dx = fg Ou — Cp,dx + tfg g, dx + fQ ho,dx
and

fgl,(u)mdx = fQ Gu —Cpdx +1t fQ Dy, dx + fQ ho,dx.
The last two inequalities yield
© tfo P, ® dx = fQ(/ll(u) — 5)up,dx + cfQ pudx — fa hop,dx

and

) th%(Ddxéfc().,(u)—éz)uq:,,dx+Cfgwudx—fah%dx.
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We notice that §, < 4,(4) < d,, hence it follows from (6) that
@®) tf ®p,dx = cf 0udx -f ho,dx
e ) )

provided 0 ug,dx = 0. Similarly, if { 0 ug,dx = 0 then again (7) implies the
inequality (8). Since we always assume that the first eigenfunctions are
normalized we derive from (8) that

té(fgdw,,dx)_l[ClQ|”2+(fgh2dx)”2].

Here | Q| denotes the n-dimensional Lebesgue measure of Q. By Lemma 1

-1 172
té(infd)- inf (p,,dx) [CIQI"2+<I h’dx) ],
e EL(Q) J ¢ e

and this completes the proof.
LEMMA 3. For each fixed t the problem (1,), (2) has a subsolution.
PROOF. Let us consider the Dirichlet problem
Lu=0u—C+td+h inQ,
u(x)=0 ondQ,

where J; and C are constants appearing in the inequality (4). Since J, < k;, by
the Schauder fixed point theorem this problem admits at least one solution
U € W"¥Q). Taking C large, to ensure that t® + & < C on Q, by the maxi-
mum principle we then obtain U = 0 on Q. The fact that U is a subsolution of
(1,), (2) follows from the estimate (4).

LEMMA 4. There exists t such that the problem (1,), (2) has a supersolution.

Proor. We follow here the argument from the proof of Lemma 6 in [16].
Let 0, c 0, C Q,C O, C Q with |Q — Q,} = to be chosen later. For a fixed
N > 0 we define

m =sup{ f(s)+ h(x); x€EQ,0 =5 = N}.

Let H€E€ C(Q) satisfy H(x)=|{m|on Q —Q,, Hx)=0o0on Q,and 0= H =
{m| on Q. We denote by V a solution to the Dirichlet problem

Lu=H inQ, u=0 ondQ.

The existence of a solution ¥ € W'3(Q) easily follows from the Schauder fixed
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point theorem. Since H = 0 on Q, it follows from the maximum principle that
V = 0 on Q. By standard estimates (see [17], Theorem 8.16 p. 191) we have

V)SG | H |l =Ciim|1Q - Q" = Ci|m|d""

where s > n and C, >0 is a constant independent of V. We now choose J so
that C;|m |6 = N. It is obvious that |m| + t® = H on Q for ¢ sufficiently
large and negative. Thus

LV=Hzm+t®dz= fix,V)+t®+h onQ,

that is, V' is a supersolution.

3. Existence of at least one solution

We now are in a position to establish the following existence result.

THEOREM 1. There exists t* such that the problem (1,), (2) has at least one
solution for t < t* and no solution for t > t*.

Proor. By Lemma 4 for ¢ large and negative there exists a supersolution
Ve W (Q) of (1,), (2) which is non-negative on Q. Lemma 3 implies the
existence of a subsolution U € W¥(Q) of (1,), (2). It follows, from the proof of
Lemma 3 that U =0 on Q, hence U = V on Q. Applying the result of Deuel
and Hess [15] we conclude the existence of a solution u € W'(Q) of the
problem (1,), (2) such that U = u = V on Q. Now we shall show that if there
exists a solution to the problem (1,), (2) for ¢ =, then there exists also a
solution to this problem for each ¢ <. Indeed, let ¢ <fand u € W**Q) be a
solution of the problem (1;), (2). Thus

Lu=fi)+t®d+hzf@)+t®P+h inQ,

and consequently # is a supersolution of the problem (1,), (2). It follows from
the estimate (4) that

Lu>6u—-C+td+h inQ.
Since J, < k,, the Dirichlet problem
Lv=06w—C+td+h inQ, v=0 ondQ

has at least one solution vE€ W'*(Q). By virtue of Theorem 8.16 in [17),
vE& L*(Q). We now notice that
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L‘a—v)zd(u—-v) inQ,
u—v=0 on dQ,

hence by the maximum principle # = v on . Consequently there exists
a constant M >0 such that # = — M on Q. Finally, let us consider the
Dirichlet problem

Lu=6u—C+t®+h inQ,
u=—M ondQ.

By the Schauder fixed point theorem this problem has at least one solution
Ve w'¥Q). Since we may assume that C > t® + 4 on @, the maximum
principle yields V' = — M on Q. It then follows from (4) that

Lv=fiN+t®+h inQ,

that is, ¥ is a subsolution of the problem (1,), (2) such that V=< on Q.
Applying again the result of Deuel and Hess [15] we deduce the existence of a
solution u € W'¥Q) of the problem (1,), (2) such that ¥ =u <1 on Q. To
complete the proof we set

(11)  * = sup{¢; the problem (1,), (2) admits a solution in W"Z(Q)}.

To establish the existence of a solution of (1,.), (2) we need the concept of the
G-convergence (see Spagnolo [24]).
Let H~'(Q) = (W"¥Q))* and set

M(a, B, Q)={A€L(W"2(Q),H"(Q)); --3 Di(ay(x)D;-)

Lj=1

With a,]EL‘”(Q), a,‘j = aj,-(i,j = l, “ .oy n)and

allPP= ¥ ai(x)&&E =pIE) forall (ER, and a.e.xEQ}.
ij=1

A sequence of operators {4;} (6 >0) in M(a, 8, Q) is said to be G-
convergent to 4,EM(a, B, Q) iff for each f€ H'(Q) we have lim;_,4;'f =
Ay ' fweakly in W'3(Q).

The following result is due to Spagnolo [24]. Let {4;} be a sequence in
M(a, B, Q), then there exist 4;EM(a, B!, Q) for some B'>0 and a sub-
sequence {4} of {4;} such that 4; G-converges to A4,.

It is also known that if A; G-converges to A,, then the eigenvalues of A4;
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converge to eigenvalues of A, Also eigenfunctions of A; converge weakly in
W'¥(Q) to eigenfunctions of A, (see [4]).

Finally, if the sequence {4;} (6 = 0) in M(a, 8, Q) is G-convergent to A, and
if {13} in W'X(Q) satisfies

(a) limy_, v; = v weakly in W(Q),

(b) lim,_.o 4505 = fin HY(Q),
then Ay = f(see Spagnolo [24]).

THEOREM 2. The problem (1,), (2) has at least one solution in W¥Q).

Proor. By Lemma | t*, defined by (11), is finite. Let ¢, <t*and ¢, — t*as
k— . By Theorem 1 for every k there exists at least one solution u; in
Wh%((Q). We now show that the sequence u, is bounded in W'%(Q). In the
contrary case we may assume that || u, | y12— o0 as k — oo. It is easy to deduce
from (A) and (B) that

(12) fQ | Du(x) dx = C, fo w.(x)%dx + C,

for some constants C, >0 and C,>0. Therefore we may assume that
lim; ., || # || 2= co. The inequality (12) also shows that v, = u; || w || 3" is
bounded in W'%Q). Consequently we may assume that there exists a function
vE€ W'YQ) such that lim,_._ v, = v weakly in W'¥Q), strongly in L¥Q) and
ae. on Q. We may also assume that the sequence of operators L* is
G-convergent to an operator BEM(a, B!, Q) for some !> 0. Since

@ h
limf [ S) + ]de
k= J oL || Uy |2 Nl o |2z

= fo’(oo)v“I‘dx - fQ S (— o)~ wdx

for each y € W'¥Q), we derive from the remark preceding this theorem that v
satisfies the equation

(13) By= (ot — f(— 0)v~ in Q

and moreover || v |2 = 1. Since the eigenvalues of L* converge to eigenvalues
of B, it is clear that the first eigenvalue v, of B satisfies the inequality
K =v, =k, It then follows from (B) that f(— o) <v, < (o). Hence
it is easy to see that the only solution in W"¥Q) of (13) is a trivial solution
and we obtain a contradiction. Consequently the sequence {# } is bounded in
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W(Q). It is now routine to show that a subsequence of {u: } converges weakly
in WYQ), strongly in L¥Q) and a.e. on Q to a solution u € W'¥(Q) of the
problem (1,), (2).

4, Existence of multiple solutions

Throughout this section we assume (A) and (B). To establish the existence of
multiple solutions we use the degree theory for operators of class (S), (see
Berkovits [7], Berkovits and Mustonen [6] or Browder [9]).

We recall that a mapping fof a subset G of a Banach space X into its dual X*
is said to be of class (S), if for any sequence {x;} in G which converges weakly
to x in X and for which lim,_ ,(f(x;), x; — x) =0 we have x;, — x.

First we observe that the left side of the equation (1,) gives rise to a bounded
and continuous operator T, of class (S), from W'%Q) into its dual space
H~YQ), defined by the formula

(T,(u),v)=f[ i aij(x,u)DiuDjv—f(u)v—t<Dv-—hv]dx

QLljj=1

for all  and v in W'¥(Q).
We commence with an a priori bound for solutions of the problem (1), (2),
where the equation (1,) has the form Lu = f(u) + h.

LEMMA 5. Let H be a bounded subset of L*(Q). Then there exists a
constant C(H) > 0 such that for any solution u € W*Q) of the problem (1,),
(2) with h € H we have

I # llwig = C(H).

ProoF. In the contrary case there exists a sequence {A,} in H and the
corresponding sequence of solutions {u,,} in W'(Q) of the problem (1,), (2)
such that lim,, ., || #n |2 = o. As in the proof of Theorem 2 we show also
that lim,, ., || 4, [|;2= o and the sequence v, = u,, | 4, | ' is bounded in
W' Q). Therefore we may assume that v,, converges to a function vE€ W'%(Q)
weakly in W'%(Q), strongly in L*Q) and a.e. on Q. Using the concept of the
G-convergence we show that v satisfies the equation

By= fi(co)* — f(— o),

where BEM(a, B!, Q) for some !> 0. This fact gives a contradiction (for
details see the proof of Theorem 2).
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LEMMA 6. For each t = t* there exists a constant R(t)> 0 such that the
degree of T, satisfies
d(T,, Bz(0),0)=0

for each R = R(t), where Bg(0) is a ball centred at 0 of radius R in W"¥Q).

This result is a consequence of Lemmas 5 and 2 and the standard homotopy
argument.

To prove that the degree is equal to 1 in an open and bounded set in W'(Q)
we use some ideas of McKenna and Walter [20].

We recall that a function J: (0, «0)— (0, o) is called a modulus of con-
tinuity if it is increasing on (0, o) and satisfies lim, o, d(s) = 0.

The following result can be found in McKenna and Walter [20] (Lemma 1).

Let K be a compact set in L%(Q) and let ® be positive a.e. on Q. Then there
exists a modulus of continuity J, depending only on K and ®, such that

I(lel =@/ 2=6(§) for{>0 and gpEK.
Since f'( — o) <k, for each u € L¥Q) the Dirichlet problem
L'z — f(—0)z=g(u)+h inQ, z=0 ondQ
has a unique solution z € W"Q) such that
(14) | Dz ||y = B || g(u) + || gy,

for some constant B > 0 independent of u and for any g with g’€ L>(R).
It is also well known that there exists a constant P > 0 such that

(15) Il v llLxg) = P || Dv || 2

for each vE€ W'¥(Q).
For each v€ L(Q) let ®,€ W'*(Q) be a solution of the Dirichlet problem

L'u=® inQ and u(x)=0 ondgQ.

Let us set ®,(x) = infe; 34, P,(x); obviously @, € L=(Q), moreover it follows
from Theorem 8.18 in [17] that ®,(x)> 0 on Q. For each ¢ >0 and tER
we set

O0.= U (®,+tB),
¥ELYQ)

where B = B(0) is an open unit ball in W'3(Q). It follows from the assumption
(A) that
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sup | DO, [|2=C Pz

vELYQ)

for some constant C > 0. Consequently the O, , is bounded for each t and &. We
now observe that since f'( — o) < k, the operator

(L= f(— o))~ ': LX(Q)—~ LXQ)
exists and is compact. Let

K= U {@-F(— ) @)}

ELYQ)

It follows from the compactness of the embedding of W'*(Q) into L*Q) that K
is a compact subset of L% Q). Finally let 6 be the modulus of continuity of X
with respect to ®@,.

LEMMA 7. There exists ¢ >0 and t, such that d(T,, O,,,0)=1 fort = t,.

Proor. We follow here the argument of Theorem 1 in [20]. First we show
that one can choose £, and & > 0 such that equation 7, = { has no solution on
the boundary of O, for t = ¢,.

The equation (1,) can be written in the form

(1) Lu=flu)+s(—®)+h inQ,

where s = —t. Let 4 =supg| f(t) — f(c0)]. We now choose ¢ >0 and ¢
so that

B

(16) 6(e(4P+B))=————

4AP + B)A
and
a7 ()| @, |- +eP)<eB/4  forall weELXQ),
where Pand B, = B ' are constants appearing in the inequalities (14) and (15),
respectively. With the change of the parameter s = — ¢ we set

Q~s,e = U (Sd)v - S8B),
L0

where &, = — ®,. As in [20] we write (1,) in the form
(18) Lu—f(—o)u=gu)+s(—®)+h,

with g(u) = flu) — f( — o)u. The function g can be written in the form
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g(u) = go(u) + gi(u) + gx(u),

where g4(0) = 0 and g{ is bounded by g, g, is bounded, g,(u) = 0 for u = 0 and

|g5u)| < A. Let u be a solution of (1,) in W'¥Q) belonging to 40,,, that is
uEs®,— sedB for some vEL¥Q) and u Esd, — seB for all wEL¥Q) and
w # v. We show that this leads to a contradiction for some ¢ >0 and s
sufficiently large. It is clear that

Il 8o(x) |22 = gs(|| @, [|.2 + &P) = seBy/4,
hAlez+ | &) | =seB/4 for s = s,
for sufficiently large s, and
| &) |l2sA4 | uy |2
Now for some w € B we have
Nus 2 S )| 5P, + sew), |2 S || sew || 2 = Pse,
since ®, < 0 on Q. Consequently
(19) I A2+ || &) |2 = Bies + APse = se(B, + AP).
Now equation (18) can be written as
(20) u=s®, +(L* = f(— o)) '(g(u) + h)
and by estimate (19) we obtain
u =sd, + se(AP + By,
for some y € K. Therefore we see that
Hus lz=5 1| (D + &P +BW)s |2 =5 | (— D, + e(4P + B)W). |2
= se(AP + B,)5(e(AP + B))) = Byse/4A.
This estimate implies that
&) |2 =4 || us |12 = seB,/4
and consequently
Il g@) liz+ || A lle2 = 3seBi/4.

Combining the representation (20), estimate (14) and the last inequality we
obtain
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| D —s®B,) 2= | DAL* = f(— o))" (gu) + h) || 2
<B|gu)+h | = ise,

which means that 4 €s®, + 3seB. This contradicts the fact that u €30, . This
estimation remains true for the equation

LM — f(—c)u=s®+Ah+gu)), 0=i=s1.

To complete the proof we observe that the degree of the operator associated
with the Dirichlet problem

Luy=5®+ f(—c)u inQ, u(x)=0 ondQ

is equal to 1 and the result follows applying the homotopy argument.
Now by combining Lemmas 6 and 7 with the excision property of the degree
we easily obtain the following result.

THEOREM 3. There exists t, such that for every t = t, the Dirichlet problem
(1,), (2) has at least two solutions.

It is obvious that the numbers ¢* and ¢, from Theorems 1 and 3 satisfy the
inequality ¢, < t*.
5. The Dirichlet problem in a weighted Sobolev space; nonresonant case

In this section we additionally assume that

(C) The coefficients a;(i,j = 1,. .., n) are continuous on Q X R and for each
u€ER, a;(-, u)ECYQ) and moreover there exist functions 4; € CY(Q)
such that

l%m a;(x,u)=A;(x) and lim D,a;(x, u)= D,A;(x)
jul—~oo |u|—>o

(i,j=1,...,n)uniformly in x €Q.
We assume that the boundary 3Q is of class C2.

With these limit coefficients we associate the elliptic operator

A=— 3 D4,()D,").

i,j=1

Let u, denote the first eigenvalue of the operator A. We always have k; < y,.
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One can give examples of elliptic quasilinear operators for which both cases
K, = 4, OF K, <[4, OCCUT.
Under this additional hypothesis we consider the Dirichlet problem

(21) Lu=f(x,u) in Q,
(22) u(x)=¢(x) ondQ,

where ¢ € LY3Q). In paper [13] we considered the Dirichlet problem (21) and
(22) in both situations k, = u, and x, <y, and we proved that the problem (21),
(22) admits a solution in a weighted Sobolov space provided f(x, u) = uu with
U <K, = u,, where u is constant. A similar existence result was proved in the
case where u = k, with k;, < i,. The objective of this section is to improve these
existence results and show that the problem (21), (22) is solvable if u <y,
regardless of the relation between g, and ;.
We impose the following condition on the nonlinearity f:

(D) The nonlinearity f'satisfies the Carathéodory condition and
[fix,t)| Zalt|+b onQXR,
where a > 0 and b > 0 are constants.

Since the boundary datum ¢ € L%(dQ) and not every function from this
space is a trace of an element from W'%Q) we cannot expect a solution of (21),
(22) to belong to W'¥(Q). It follows from [10] and [11] (see also [22]) that the
suitable Sobolev space in our situation is

WiyQ) = {u; u € Wii2(Q) and f o (1 Du(x)*r(x) + u(x)?dx < 00}
equipped with the norm
4 Mgy = 11DUCEBr(e) + u(xax,

where r(x) = dist(x, Q) for x€Q.

To explain the meaning of the boundary condition (22) we need some
terminology. It follows from the regularity of the boundary dQ that there exists
a number J, > 0 such that for § €(0, J,) the domain

Q,,=Qn{x;min |x—y|>6}
yESQ

with the boundary dQ; possesses the following property: to each x, EQ there
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is a unique point x;(x;) €9Q; such that x;(x;) = x, — dv(x;), where v(x,) is the
outward normal dQ at x,. The above relation gives a one-to-one mapping, of
class C', of 3Q on 8Q;.

As in [10] (see also [11] and [22]) we adopt the following approach to the
Dirichlet problem (21), (22).

Let p €LHAQ). A weak solution u € W}3(Q) of (21) is a solution of the
Dirichlet problem with the boundary condition (22) if

23) lim [ [ () — p()dS, =0,

It follows from [11] that any solution u € W}2(Q) of (21), (22), with the
boundary condition in the sense of the L2-convergence, must belong to
W'¥(Q).

Since dQ € C%, the distance function r(x) belongs to CX(Q — Q;), if J, is
sufficiently small. We denote by p(x) the extension of the function r(x) into Q
satisfying the following properties: p(x) =r(x) on Q — Q;, pECXQ) and
p(x)>0on Q.

THEOREM 4. Let i, <u,. If

lim fx, )

=U<py
|t]— t

uniformly in x €Q, then the Dirichlet problem (21), (22) has at least one
solution u € W¥Q).

ProoF. For ¢ >0 we set

__ Sxu)
Jfix, u) T elfoc )] for (x,u)€Q XR

and consider for each ¢ > 0 the Dirichlet problem
(21¢) Lu=f(x,u) inQ,

with the boundary condition (22). Since | f;(x, u)| = 1/e on Q X R, it follows
from [12] that for each & > 0 there exists a solution #, € W'*Q) of the problem
(21e), (22).

The family of solutions {u,, & >0} must be bounded in L¥Q). In the
contrary case we may assume that || «,_ ||;:— co for some sequence ¢,, — 0. Let
us set U, = u, and v,, = U, || 4, | ' and let
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Un(x)(p(x) — ) on Qs
p(x)=
onQ —Q;
for 0 =6 = &,. Taking y as a test function and integrating by parts we get

i a;(x, U )Djthy Dl (p — d)dx
@ ij=1

_1 f i fu” a;(x, s)dsD,;pD;pdS,
2Jags 0,j=1¢/0

__l.f 2": fum a;(x, s)dsD,-jpdx—lf f‘, fu" D,a;(x, s)dsD;pdx
2J0 i ja1J0 2J0 ij=140
éf@lf(x, )| 121 |(p — O)dx.

Letting 6 — 0 and applying the ellipticity condition and the Young inequality
we obtain

25) f | Du,, pdx = C, f widx + C, f S, + C;
Q Q Q

for some positive constants C,, C, and C;. This inequality implies that the
sequence v,, is bounded in W'%(Q). Consequently, by Theorem 4.11 in [21], we
may assume that lim,,_., v,, = v weakly in W'*(Q), strongly in L*(Q) and a.e.
on Q. Since || v, ]|.2=1 for each m, v=0 on Q. We now observe that

1
1+ e, flx, tiy))

=1 onQ forallm

and therefore we may assume that
1

1+ &, | flx, um)l

converges weakly in L%(Q) to some function a € L¥Q).

It is also clear that

(26) f . a(x)w(x)%dx = f . w(x)%dx

for each wEL¥Q). Let y be a function in W"¥ Q) with compact support
in Q, thus
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@7 fQ ila,-,-(x,um)u.-vmu,-wdx= fgfe,(x,um)n i || 3w ().

ij=

Writing the right hand side of (2) as

Je (X, Up) [ SOx, u) ] w(x)
om T/ d i .
¢ Nl " T i O T e 1w

w(x)
+”fe”(x)1+em|f(x, &

and using the assumption that

tim 720 _

[fl=o ¢

4 uniformly in Q,

we can easily show that

(28) fim [ L= %)
m=0JQ || Uy ||

y(x)dx =p f o a(x)v(x)y(x)dx.
On the other hand

Y a;(x, p)D;v, Dyydx = || thy, IIL‘z'fQ )y D,»J;"a,»j(x,s)dsD,y/dx
ij=1

Q ij=1

~Nunlz' [ 5 [ Daytx, rdsDyas
Q ij=1v 0

== lun !IE'f ) f”a,-,-(x,s)dsp,j.,,dx
Q ij=1v0

— || % "L_zlfo > L"D,-a,»j(x, $)dsD;ydx
1

ij=

and repeating the argument from [12] we deduce that
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. n n
llm Z a,'j(x, um)Diuij'I/dx = “‘f 2 AUD,JI//vdX
m=0JQ ;jm] Q ij=1

- z D,AUUDJde.

Qij=1

Combining the last relation with (27) and (28) we get

(29) i Ay;(x)D;vD;ydx = p fQ a(x)vwydx

Qij=1
for each y € W'*(Q) with compact support in Q. It follows from [10] that v has
a trace £ €L%3Q). Replacing in (29) v by y - p with y € W'¥Q) and integrat-
ing by parts we get

n n
Y AyD;vD;ypdx — Y A;EwD,pD;pds,

Qij=1 9Q i j=1

(30) n

- fc Y D{(A;Djpvypdx = p fQ a(x)vydx.
1

b=

Similarly taking py as a test function, with y € W'} Q), we get

~ Nl [ 3 [*Dayx, dsDypax

Q ij=140

= | 4m ||E1'fQ .Zlﬂmag(x,s)dsD,A(Djv/p)dx
ij=

~ Nz [ 3 [ Diayix, s)syDjpds

Q ij=1J0

= [ um IIE'fQ .ij;"a,-j(x,s)dsD,-(ijp)ds

L=

= || tm "L_zlf P f”ﬂ a,'j(X, $)dsD,pdS,
Q j,jm14/0

= ||t || ! fgf,,(x, Uy dx.

Letting m — oo we derive from the last equation that
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n

[ $ Da,e)Dypdx — fQ S A4, ()uDy(D,y,)dx
1

Q ij=1 hj=
G0 - [ 3 DayowDpdx= | 3 4,6uD(wDpNx
ij=1 ij=1
=/zf a(x)vydx
Q

for each y € W'} Q). Comparing (30) and (31) we get

LV 2 Ay(x)DipD;plds, =0

a ij=1

for each w € W"¥Q) and consequently £ =0 a.e. on dQ. Taking v as a test
function in (29) we obtain from the variational characterization of the first
eigenvalue y, that

,ulf v(x)zdxéf i A;(x)D,vD;vdx
Q e 1

i,j=

— 2
=U fQ a(x)v’dx

é,llf vidx,
)

which is impossible since 4, >z and v=0 on Q. Therefore {u,, } is bounded in
L¥Q) and by virtue of the estimate (25) the sequence {u,,} is bounded in
W'Q). Now it is obvious that with the aid of Theorem 4.11 in [21] we can
show that a suitable subsequence of u,, converges to solution of (21), (22)
weakly in W'XQ), strongly in L*Q) and a.e. on Q (for details see [11]
and [12)).

If we assume the existence of one-sided limits in (C) we can only claim the
existence of solutions for nonnegative or nonpositive boundary data. Namely,
let us assume

(C)) lim a;;(x, t) = 4} (x), lim D,a;(x, t)= D, A (x)
t—o t—ow

uniformly in 0, where 4} €C(Q) (i,j=1,...,n).
Let ;' be the first eigenvalue of the operator

A* == 3 DfAf (x)D;").

ij=1



Vol. 63, 1988 QUASILINEAR ELLIPTICITY AND THE DIRICHLET PROBLEM 373
THEOREM 5. Suppose that (C..) holds and that

lim f

t—o0

(xt’ . =p<u’

uniformly in x€Q and f(x,u)=0 for x€Q and u€[0, ). Then for each
@ €ELY3Q), with ¢ = 0 0n 3Q, there exists a nonnegative solution u € W'¥Q).

Proor. For each ¢ > 0 we consider the Dirichlet problem

|f(x, u)]

2 L LA S 4 E—
@L.) 1+ ¢ fix, w)|

in Q,

with the boundary condition (22). It follows from [12] and the maximum
principle that for each ¢ >0 the problem (21,,), (22) has a nonnegative
solution u, € W'4(Q). Consequently u, satisfies the equation

flx, u,)

TTtelfnum) ¢

Repeating the argument of Theorem 4 the result easily follows.
Finally, let us assume that

C)) lim a;(x,t)=A4; (x), lim D,a;(x, t) = D, A; (x)
t~—o t—w

uniformly in x €Q, where 47 ECYQ) (i,j=1,...,n).
Denoting by u, the first eigenvalue of the elliptic operator

A-=— 3 Di4j ()D,")

i,j=1
we can state the following existence result.

THEOREM 6. Suppose (C_) holds and that

lim 1

[Andad

(x,1) _
—, M <p

uniformly in x € Q and that f(x, u) = 0 for x €Q and u €[0, ). Then for each
@ ELYQ) with ¢ =0 on Q, there exists a nonpositive solution in W'(Q) of
the problem (21), (22).
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6. The Dirichlet problem with the nonlinearity crossing the first eigenvalue
of the limit operator

The aim of this section is to investigate the existence of solutions of the
problem (1,), (2) under the assumption (C). We commence with a partial
existence result. As in Section 5 we denote by u;” the first eigenvalue of the
operator A~

THEOREM 7. Suppose that the coefficients a;, i =1, ..., n, satisfy (C_)
and that f has a bounded derivative with f'( — o) < u;". Then there exists t, such
that the problem (1,), (2) is solvable in W'¥(Q) for each t < t,.

Proor. It follows from the assumptions on f, that there exists §, >0 and
C > 0 such that

fls)zds—C
for all s €ER. By Theorem § for every ¢, the Dirichlet problem
Lu=6u—-C+t®+h inQ,
u(x)=0 onadQ

has a nonpositive solution U € W'*(Q). Here C is chosen so that t® + h < C
on Q. It is clear that U is a subsolution of the problem (1,), (2). Inspection of
Lemma 4 shows that there exists 7, such that the problem (1,), (2) has
nonnegative supersolution V€ W'¥Q) for each t <, The existence of a
solution for each ¢ =< ¢, follows from the result of Deuel and Hess [15].

We now establish a nonexistence result.

THEOREM 8. Suppose that the coefficients a;, i,j=1,...,n, satisfy
(C) and that f has a bounded derivative on R with f/(— o) <p; < f'(0).
Then there exists t, such that the problem (1,), (2) has no solution in W¥Q)
forallt = t,.

ProOF. Suppose that our assertion is false. Then there exist a sequence
t,, — o0 as m — o and a sequence {u,, } in W'¥Q) such that

Lu,, = f(un,) + t,®(x) + h(x) inQ,
Un(x)=0 on dQ.

First we prove that the sequence {u,,/t,,} is bounded in L¥Q). In the contrary
case we may assume that
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) u
llm " m “ LZ =
m—x tm
This also implies that lim,, ., || % |22 = oo. Letussetv,, = u,,/ || #,, || 2. Using
u,, as a test function in (3) we derive the estimate

(32) f | Du,, [*dx < C, f wdx + Coty + G
Q Q

for some constants C, >0, C,> 0 and C; > 0. This estimate yields that

t C
C,+—= —~.
Il t4m || 22 | um I 22

Since ¢,/ || u, ||3» and 1/ u, ||, both tend to 0 as m — o0, we conclude
that the sequence v, is bounded in W'%(Q). Therefore we may assume that
lim,, . v, = v weakly in W"“¥Q), strongly in L%Q) and a.e. on Q. Since
| vm |z2=1 for all m, we see that v=0 on Q. It is also easy to see that v
satisfies the equation

Av=f(o)* — f(—0)p~ inQ,
which has only trivial solution and we arrive at a contradiction. Consequently
Wn = U,/t,, must be bounded in L¥Q) and by (32) it is also bounded in
W'YQ). Therefore we may assume that lim,,_ . w,, = w weakly in W'Q),

strongly in L%Q) and a.e. on Q. The limit function w is a solution of the
equation

fwvm dx = C, +

Aw = f(o)wt — f(—o)w~+® in Q.
Taking as a test function the first eigenfunction ®, of 4 we get
o f wdx = f(x) f wH®dx — f((— w) f w-®,dx + f O, dx,
) Q e )
which gives that

(f(— 0) = pr) fQ W Bydx = (f(e0) — ty) f WD+ fQ OP,dx.

Since f/(— o) —u; <0, f(0)— ;>0 and Io ®dP,dx >0, we get a con-
tradiction.

It is clear that, under the assumptions of Theorem 8, Lemma 5 continues to
hold. Consequently using the homotopy argument we show that for each ¢
there exists a R(¢) > 0 such that
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d(T;, Bz(0),0)=0

for each R = R(¢).
We are now in a position to formulate the multiplicity result.

THEOREM 9. Suppose that the coefficients a;, i,j=1,...,n, satisfy (C)
and that the nonlinearity f has a bounded derivative on R with f'( — «0) < k, and
f"(00) > u,. Then there exists t, such that the problem (1,), (2) has at least two
solutions for t =1,.

The inequality f/( — c0) <k, implies that Lemma 7 remains true and the
result follows from the excision property of the degree of the operator T,.

Theorem 9 is a generalization of Theorem 3. We point out here that one can
give an example of a quasilinear operator for which k, > u, therefore the
inequality f’(c0) > u, not necessarily implies the second inequality from the
assumption (B).

7. The Dirichlet problem in resonance

Recently Shapiro [23] has introduced the following quantity related to the
spectrum of the family of the operators {L*, vE L¥Q)}.
Let y,, be a sequence of orthonormal eigenfunctions of the Laplace operator

_AWm =lme in Q’

Wa(x)=0 ondQ.
Let
(L%u,u)

A;“=inf{——,uz0,u =Ciyy+ -« +C,w,,
(u, u)

w=_y,+ .- +{,¥, ,wherenisan arbitrary integer,

C,...,Chand {,,..., {,are constants} .

AT can be viewed as a generalized first eigenvalue of the quasilinear operator L.
Under the different set of assumptions on L Shapiro [23] established some
existence theorem for the Dirichlet problem in resonance. Here we briefly
discuss the Dirichlet problem in resonance under the assumption that the
coefficients (a;}, i,j =1, ..., n, satisfy (C) with 4, = k.

We commence by showing that x, = Af. Indeed, taking
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w=wy=Ny,+ Ly, + --- + ¥,
and u as in the definition of A¥ we have

(L¥wu,u)

(u, u)

A

A

Letting N — oo we obtain

(Au, u)

(u,u)

IA

At

Since {,, } is complete in #'%(Q) we see that A* =< y,. On the other hand, for
each w=Cy,+---+Cuy, and u=Cy,+ -+ +Cy,, with u=0,
we have

(L*u,u)

KSAMS
(u, u)
and consequently x; < A¥.

THEOREM 10. Suppose that the nonlinearity f is a Carathéodory function
on Q@ XRand | fix,u)| = H(x) on Q@ X R for some nonnegative function H in
L¥Q). Suppose further that there exist limits

lim flx, u)=f*(x) and lim fix, u)=f"(x)

ae.onQ.If

(33) J o+ | hoid <o
and

(34) ) T+ | hO)(x)dx >0,

where ®, is the first eigenfunction of A, then the Dirichlet problem
Lu=fix,u)+h(x) inQ and u(x)=0 ondQ
admits a solution in W"¥(Q).
ProOF. For each integer m = 1 we consider the Dirichlet problem
Lu=(x —1/mu+ fix,u)+h(x) inQ and u(x)=0 ondQ.

According to Theorem 4, for each m there exists a solution u,, € W¥Q). It is
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sufficient to show that the sequence {u,,} is bounded in L*Q). In the contrary
case we may assume that lim,, . , || %, ||z = . It is easy to see that

f IDu,,, Ide = le u,%,dx + C2
Q Q

for some constants C, >0 and C,>0. Consequently the sequence v, =
Up! || #y, |22 is bounded in W'HQ).

It is now routine to show that a subsequence of v,,, which we relabel again as
U, converges to a function v weakly in W'3(Q), strongly in L*(Q) and a.e. on
Q. Moreover v satisfies the equation Av=x,v. Since | v| =1, there-
fore either v=®, or v= — @,. It follows from the variational characteriza-
tion of eigenvalues that

1
1 f whdx < f 706, Yudx + f h(e)dx
moJao Q Q
and this implies that
0= f 70 v [t [l0mdx + f hundx.
Q Q
If v =@, we get, letting m — oo, that
0 [ re®ds+ [ hoodicax,
Q Q
which contradicts (32). Similarly, if v = — ®, we get
o;f F- (o), (x)dx + f h(x)D,(x)dx
Q Q

which gives a contradiction to (34).
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